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ABSTRACT 
This paper proposes the framework of neutrosophic linear goal programming (NGP) approach for solving multi 

objective optimization problems involving uncertainty and indeterminacy. In the proposed approach, the degree 

of membership (acceptance), indeterminacy and falsity (rejection) of the objectives are simultaneously 

considered. Three neutrosophic linear goal programming models have been proposed. The drawbacks of the 

existing neutrosophic optimization models have been addressed and new direction of research in neutrosophic 

optimization problem has been proposed. The essence of the proposed approach is that it is capable of dealing 

with indeterminacy and falsity simultaneously. 

 

1. INTRODUCTION  
Goal programming can be viewed in two ways. In first consideration, it is an extension of linear programming to 

include multi objectives, expressed by means of attempted achievement of goal values. In second consideration, 

linear programming is a special case of goal programming having single objective.  These two considerations 

reflect that goal programming lies within the paradigm of multi objective programming [1]. Goal programming 

may be characterized as an analytical approach devised to address multi objective decision making problems 

having inherent multiple conflicting objectives where targets have been assigned to all the attributes in the 

planning horizon and where decision making unit is mainly interested in minimizing the non-achievement of the 

goals.The ethos of goal programming lies in the Simon’s concept [2] of satisfying of objectives. GP has 

appeared as robust tool for multi objective decision analysis. It appears to be an appropriate, powerful, and 

flexible technique in operations research for decision making problems with multiple conflicting objectives. The 

literature on goal programming has tremendously grown.  

 

Goal programming is perhaps the most widely used multi criteria decision making (MCDM) approach.  The idea 

of GP can be visualized from the concept of efficiency introduced by Koopmans [3] in the context of resource 

allocation planning. The roots of goal programming lie in the study of Charnes, Cooper and Ferguson [4] in 

1955 in which, they deal with executive compensation methods. In 1961, Charnes and Cooper [5] offered a 

more explicit definition and coined the term ‘goal programming’.  

 

Thereafter, a large number of studies have been made by pioneer researchers and the significant methodological 

development of goal programming have been achieved by Ijiri [6], Lee [7], Ignizio [8],  Schniederjans [9], 

Romero [10], Schniederjans [11] and other researches. The vast literature of goal programming reflects its 

theoretical elegance and significance.  

 

In 1980, Narasimhan [12] employed the concept of fuzzy set theory introduced by Zadeh [13] in goal 

programming by incorporating fuzzy goals and constraints within the traditional goal programming model in 

order to add new dimension in modeling flexibility and accuracy to the goal prorgramming model for dealing 

with uncertainty.  Thereafter, fuzzy goal progamming has been further developed by Hannan [14], Ignizio [15], 

Tiwari et al. [16, 17], Mohamed [18], Pramanik and Roy [19, 20], Pramanik and Dey [21,], Pramanik [22] and 

other researchers. 

 

Atanassov [23, 24] incorporated the degree of non-membership (rejection) as an independent component and 

defined intuitionistic fuzzy set to deal uncertainty in more flexible way. In 1995 Angelov [25] presented a new 
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concept to optimization problem in intuitionistic fuzzy environment. In 1997, Angelov [26] restated 

intuitionistic fuzzy linear programming problem [25] considering maximizing membership function and 

minimizing the non-membership functions simultaneously by extending fuzzy linear multi- objective 

programmming proposed by Zimmermann [27]. In 2001, Angelov [28] also presented a general formulation of 

the optimization problem of an air conditioning system in the framework of intuitionistic fuzzy set theory.  

 

Goal programming in intuitionistic fuzzy environment is called intuitionistic fuzzy goal programming. In 2005,    

Pramanik and Roy [29] proposed intuitionistic fuzzy goal programming (IFGP) by extending fuzzy goal 

programming. Pramanik and Roy [30, 31, 32] also presented intuitionistic fuzzy goal programming for quality 

control problem, transportation problems and bi-level programming problems respectively but these problems 

are numerical problems. Major success has not been achieved in intuitionistic multi-objective optimization 

problems. 

Smarandache [33, 34, 35, 36] introduced the concept of the degree of indeterminacy/neutrality as independent 

component in 1998 and defined the neutrosophic set in order to deal with uncertainty and indeterminacy 

involved in real world problems. The significance of Smarandache’s work [33] is that it is capable of dealing 

with indeterminacy which is beyond the scope of fuzzy set and intuitionistic fuzzy set. The need of neutrosophic 

set was felt and actually discovered by Smarandache in 1995 and he wrote the manuscript in 1995 but he 

published it in 1998.  When the new paradigm was grounded by Smarandache [33], the usual process of a 

paradigm shift started. The concept of neutrosophic set, derived from neutrosophy, which underlies the new 

paradigm, was initially ignored, ridiculed, or attacked by many [37, 38], while it was supported only by a very 

few, mostly young, unknown, and uninfluential researchers. Inspite of the initial lack of interest, skepticism [37, 

38], or open hostility, the new paradigm persevered with virtually no support in the 1990s. Smarandache 

becomes the torchbearer of neutrosophy, neutrosophic set and neutrosophic logic.  He has tried his level best to 

propagate the new paradigm by writing books, e-books, providing the free downloads of his writings in free 

journals and websites. The new paradigm matured significantly and gained some supports in the 2010s and 

started to demonstrate its superior pragmatic utility in the 2010s.  The paradigm shift initiated by the concept of 

neutrosophy [33] and neutrosophic set and the idea of mathematics based on neutyrosophic set, which is 

currently ongoing, possesses similar charactewristics to other paradigm shift recognized in the history of 

science.  The new paradigm shift covers a broad range of subjects, from philosophy to mathematics.  The 

paradigm shift is still ongoing and it seems that it will probably take much longer time than usual to complete it.  

This can be concluded because of the fact that the scope of the paradigm shift is very wide and open and 

competitive.  

 

In 2010, Wang et al. [39] defined singe valued neutrosophic set (SVNS) which is an instance of neutrosophic 

set, whose truth membership degree, indeterminacy and falsity degrees lie in the unit interval [0, 1].  It can be 

stated that an important point of evolution of the modern concept of uncertainty was the publication of a seminal 

work of Smarandache [33]. Although mathematics based on SVNSs has far greater expressive power than crisp 

set, fuzzy sets, intuitionistic fuzzy sets, its usefulness depends critically on one’s capability to formulate 

appropriate membership functions, indeterminate functions and falsity functions for various given concepts in 

various contexts and their multiple operational rules. Union and intersections of two SVNSs can be differently 

defined and different results can be obtained for the same optimization problem. 

 

Research on the theory of SVNSs has been growing steadily since its inception in 2010. The body of concepts 

and results pertaining to the theory of SVNS is now impressive. Research on a broad variety of applications has 

also been very attractive and has produced results that are perhaps even more impressive [40, 41, 42, 43, 44, 45, 

46, 47].   

 

In 2015, Roy and Das [48] presented multi-objective production planning problem based on neutrosophic linear 

programming approach. Das and Roy [49] presented multi-objective non-linear programming based on 

neutrosophic optimization technique and its application in riser design problem. Hezam et al. [50] studied 

Taylor series approximation to solve neutrosophic multi-objective programming problem.  In 2016, Abdel-Baset 

et al. [51] proposed neutrosophic goal programming using deviation variables. In the studies [48, 49, 50, 51], the 

researchers maximize indeterminacy. But in a real management system, decision making unit does not show any 

interest to maximize indeterminacy functions. Because maximization of indeterminacy function does offer any 
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benefit to the management system and the organization.  So it is not pragmatic to maximize indeterminacy 

function in the process of optimizing of the objective functions of the decision making problems. So, the 

techniques presented in the papers [48, 49, 50, 51] are neutrosophic in nature. Their approaches went in wrong 

directions. The claims of getting better optimal solutions in the studies [48, 49] are therefore not valid. However, 

they initiated new idea in optimization by incorporating indeterminacy. The errors committed by them occur due 

to the choice of defnitions of intersection of two neutrosophic sets. Therefore new methods for neutrosophic 

multi-objective programming problems are urgently needed.  

 

Fuzzy goal programming and intuitionistic fuzzy goal programming have been developed in order to deal with 

uncertainty. However, these two approaches are not capable of dealing with indeterminacy. It seems, therefore 

that in many environments it is more realistic to endeavor achieving several objectives simultaneously involving 

indeterminacy and incompleteness.  This observation reflects that real world problems have to be solved 

optimally according to criteria involving indeterminacy. Consequently, we must acknowledge the presence of 

several objectives which are at least contradictory, conflicting, indeterminate and often non-commensurable 

leading to the development of neutrosophic optimization technique.    

 

This paper develops new framework of neutrosophic linear goal programming model.  

Rest of the paper has been organized in the following way. Section 2 presents some basic definitions of 

neutrosophic sets, Section 3 is devoted to present the proposed framework intuitionistic fuzzy goal programming 

and neutrosophic linear fuzzy goal programming models. Section 4 presents the conclusion and future direction 

of research. 

 

2. PRELIMINARIES 
We recall some basic definitions related to neutrosophic sets which are important to develop the paper. 

2.1 Definition of neutrosophic set [33] 

Let V be a space of points (objects) with a generic element v V. A neutrosophic set S in V is characterized by a 

truth membership function )v(TS , an indeterminacy membership function )v(IS , and a falsity membership 

function )v(FS  and is denoted by 

)v(F),v(I),v(T,v{S SSS vV.} 

Here )v(TS , )v(IS and )v(FS  can be defined as follows:
 

ST : V →]


0, 1+ [  

SI : V→]


0, 1+ [  

SF : V →]


0, 1+ [ 

Here, )v(TS , )v(IS and )v(FS are the real standard and non-standard subset of]


0, 1+ [ . In general, there is no 

restriction on )v(TS , )v(IS and )v(FS . Therefore,  


 0 ≤ Inf )v(TS + inf )v(IS +inf FS (v) ≤ Sup )v(TS + Sup )v(IS +Sup FS (v) ≤ 3+ 

2.2 Definition:  Single valued neutrosophic set [39] 

Let V be a space of points with generic element vV. A single valued neutrosophic set S in V is characterized by 

a truth-membership function TS(v), an indeterminacy-membership function IS (v) and a falsity-membership 

function FS(v), for each point v in V, TS(v), IS (v), FS(v)[0, 1], when V is continuous then single-valued 

neutrosophic set S can be written as  

S =  
V

SSS v,v/)v(F),v(I),v(T V. 

When V is discrete, single-valued neutrosophic set S can be written as follows:  

S =  


n

1i
iSiSiS )v(F),v(I),v(T vi, viV 

Definition 2.3 [39]: The complement of a single valued neutrosophic set S is denoted by cS and is defined by  

)v(T cS
)v(FS ; )v(I cS

 1 )v(IS ; )v(F cS
)v(TS  
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Definition 2.4 [39]: Two single valued neutrosophic sets P and Q are equal, written as P = Q, if and only if       

P  Q and P Q. 

Definition 2.5 [52]:The union of two single valued neutrosophic sets P and Q is a single valued neutrosophic set 

R, written as R= PQ, whose truth membership, indeterminacy-membership and falsity membership functions 

are related to those of P and Q by ))v(T),v(T(max)v(T QPR  ; ))v(I),v(I(min)v(I QpR  ; 

))v(F),v(F(min)v(F QPR  for all v in V. 

Definition 2.6 [52]: The intersection of two single valued neutrosophic sets P and Q is a neutrosophic set R 

written as R = P∩ Q, whose truth membership, indeterminacy-membership and falsity membership functions 

are related to those of P and Q by ))v(T),v(T(min)v(T QPR  ; ))v(I),v(I(max)v(I QPR  ; 

))v(F),v(F(max)v(F QPR  for all v in V. 

Definition 2.7 [52]: Assume that { jP : jJ} be an arbitrary family of single valued neutrosophic sets in V, then 

i) j
Jj
P




 
may be defined as follows: 

j
Jj
P


 = )v(F),v(I),v(T,v

jP
JjjP

JjjP
Jj 

  

(ii) j
jj
P




 
may be defined as follows: 

j
jj
P


 = )v(F),v(I),v(T,v

iP
JjjP

JjiP
jj 

  

 

3. FORMULATION OF NEUTROSOPHIC LINEAR GOAL PROGRAMMING 
To formulate neutrosophic goal programming, we start from multi-objective programing problem in crisp 

environment. 

Consider an optimization problem of the form in crisp environment: 

Max )v(i , i = 1, 2, …, r1                          (1)                          

Subject to  

)v(i ≤ 0, i = r1+1,  …, r             

v  0  

where )v(i  represents the i-th objective function, v is the vector of  k decision variables (v1,v2, …, vk ), )v(i

denotes i-th constraint, r1 denotes the number of objective functions and s = r-r1 denotes the number of 

constraints. 

 

3.1 Analogous fuzzy optimization problem 

In general, fuzzy optimization problem comprises of a set of objectives and constraints. The objectives and or 

constraints or parameters and relations are expressed by fuzzy sets which explain the degree of satisfaction of 

the respective condition and expressed by their membership functions [53]. 

Consider the analogous fuzzy optimization problem of (1): 
~

axM )v(i , i = 1, 2, …, r1                         (2) 

Subject to 

)v(i
~

  0, i = r1+1,  …, r          

v  0  
~

ax denotes fuzzy maximization and 
~

  denotes the fuzzy inequality. 

To maximize the degree of membership of the objectives and constraints to the respective fuzzy sets: 

Max i( v ), v k, i = 1, 2, …, r1, r1+1, …, r                                                                (3) 

Subject to 

 0 i( v )  1, i = 1, 2, …, r1, r1+1, …, r 
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v  0  

Where i( v ) denotes the degree of membership of i-th objective function )v(i  (i = 1, 2, …r1) and i( v ) 

denotes the degree of i-th  membership function of constraint )v(i (i = r1+1, …, r ). 

Minimum operator of Bellman and Zadeh [54] can be applied to the optimization problem (3). 

 D( v ) =
r

1i
 )v(i , v  0 , i = 1, 2, …, r1, r1+1, …, r                                                                   (4) 

Therefore, D( v ) )v(i , i = 1, 2, …, r1, r1+1, …, r                                                                 (5)                 

According to Zimmermann [55], the problem can be solved as follows:  

D (
o

v ) = Max (min ( )v(1 , )v(2 , …, )v(
1r

 , )v(11r 
  , …, )v(r )                                                 (6) 

Subject to   

0  i( v )  1, i = 1, 2, …, r1, r1+1, …, r 

v  0 . 

The problem (6) is equivalent to the following problem: 

Max                                           (7) 

 i( v ), i = 1, 2, …, r1, r1+1, …, r 

v  0 . 

 

3. 2 An analogous intuitionistic fuzzy optimization (IFO) problem  

An analogous intuitionistic fuzzy optimization problem can be represented as follows: 

To maximize the degree of acceptance of intuitionistic fuzzy objective functions and constraints, and to 

minimize the degree of rejection of intuitionistic fuzzy objective functions and constraints we can write:   

Max i( v ), v k , i = 1, 2, …, r1, r1+1, …, r                                    (8) 

Min i( v ), v k, i = 1, 2, …, r1, r1+1, …, r                                                      (9)                                                                                                                                                                                   

Subject to 

i( v ) + i( v )  1 i = 1, 2, …, r1, r1+1, …, r,       

i( v )  [0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

i( v )  [0, 1], i = 1, 2, …, r1, r1+1, …, r, 

v  0            

Here i( v ) denotes the degree of membership of i-th objective function )v(i  (i = 1, 2, …r1) and i( v ) denotes 

the degree of i-th  membership function of constraint )v(i (i = r1+1, …, r).                                                     

Here i( v ) denotes the degree of non-membership of i-th objective function )v(i  (i = 1, 2, …r1)and i( v ) 

denotes the degree of i-th  non-membership function of constraint )v(i (i = r1+1, …, r).                                               

Conjunction of intuitionistic fuzzy sets can be defined as follows: 

G C = { v , G( v ) C( v ),G( v ) C( v ) v k},                                                      (10)    

where G represents an intuitionistic fuzzy objectives and C represents constraints. This conjunction operator can 

be easily generalized and applied to the IFO problem. 

Here,  

D = { v , D( v )),D( v ) v k}, D( v ) =
r

1i
 i( v ),D( v ) =

r

1i 
 i( v )                                              (11)                

where D represents an intuitionistic fuzzy set based representation of the decision.  

Min-operator can be used for conjunction and max-operator for disjunction. 

D( v ) =
r

1i
 i( v ), v k, i = 1, 2, …, r1, r1+1, …, r,                                      (12) 
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D( v ) = 
r

1i 
 i( v ), v k, i = 1, 2, …, r1, r1+1, …, r,                                                                                          (13) 

Therefore, D( v )  i( v ),D ( v )  i( v ), i = 1, 2, …, r1, r1+1, …, r,                                                                  

(14) 

 

The above intuitionistic fuzzy optimization problem can be transformed into intuitionistic fuzzy goal 

programming problem as follows:  To maximize the degree the acceptance of intuitionistic fuzzy objectives and 

constraints, and to minimize the degree of rejection of intuitionistic objectives and constraints, we can write   

Max i( v ), v k,  i = 1, 2, …, r1, r1+1, …, r,                                                                                                  (15) 

Min i( v ),  v k,  i = 1, 2, …, r1, r1+1, …, r ,                                                                                                   

(16)                                                                                                                                                                                      

Subject to 

i( v )  0, i = 1, 2, …, r1, r1+1, …, r, 

i( v )  + i( v )  1 i = 1, 2, …, r1, r1+1, …, r,                    

v 0 . 

 

For the defined membership function i ( v ), the flexible membership goals having the aspired level unity can be 

presented as follows: 

i( v ) + d 

i1 
d 

i1 
 = 1, i = 1, 2, …, r1, r1+1, …, r                                   (17)

  

 

For the case of rejection (non-membership), we can write  

i( v ) + d 

i2 
d 

i2 
= 0, i = 1, 2, …, r1, r1+1, …, r                                    (18)  

 

Since decision making unit wants to minimize the degree of rejection and maximize the degree of acceptance, 

IFGP can be formulated as: 

 

3.2.1 IFGP model-1   

Min                            (19) 

Subject to   

i( v ) + d -
i1 - d



i1  =1, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + d


i2 d


i2 = 0, i = 1, 2, …, r1, r1+1, …, r, 

i( v )  + i( v )  1 i = 1, 2, …, r1, r1+1, …, r,                    

 


i1 d , i = 1, 2, …, r1, r1+1, …, r, 

 


i2 d , i = 1, 2, …, r1, r1+1, …, r, 



i1 d  d 

i1 
= 0, i = 1, 2, …, r1, r1+1, …, r, 



i2 d 


i2 d = 0, i = 1, 2, …, r1, r1+1, …, r, 



i1 d  0, 

i1 d  0, 


i2 d  0,


i2 d  0,  i = 1, 2, …, r1, r1+1, …, r, 

v  0 . 

 

 

3.2. 2 IFGP Model (IIa)  

The minimization of the sum of the weighted deviation form: 

Min η = 


r

1  i

-

i1

-

i1dw + 



r 

1  i
i2i2dw                         (20) 
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Subject to 

i( v ) + 


i1 d - 

i1 d =1, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + 


i2 d 


i2 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

i( v )  + i( v )  1 i = 1, 2, …, r1, r1+1, …, r,                    


i1 d 


i1 d = 0, i = 1, 2, …, r1, r1+1, …, r, 



i2 d 


i2 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

-

i1w  0, 

i2w  0, i = 1, 2, …, r1, r1+1, …, r, 



i1 d  0, 

i1 d  0, 


i2 d  0,


i2 d  0,  i = 1, 2, …, r1, r1+1, …, r, 

v  0 . 

 

3.2.3 IFGP Model (IIb) 
The minimization of the sum of the deviation form: 

Min  = ( 


r

1 i

-

i1  d + 



r

1 i
i2  d )                                                               (21) 

Subject to the same set of constraints of the IFGP Model (IIa).                          

Here, 


i1 d , and 


i2 d , are deviational variables. The numerical weights w
-

i1 , w


i2  associated with


i1 d , 


i2 d represent 

the relative importance of achieving the aspired level of the respective intuitionistic fuzzy goal subject to the 

given set of constraints. To assess the relative importance of the intuitionistic fuzzy goals, the weighting scheme 

suggested by Pramanik and Roy [29] can be used to assign the values of w
-

i1 , w


i2 . 

 

3.3 Formulation of the neutrosophic linear goal programming 

Neutrosophic optimization problem can be represented as follows: 

To maximize the degree of acceptance (truth) of neutrosophic objectives and constraints, to minimize the degree 

of indeterminacy and to minimize the degree of rejection (falsity) of neutrosophic objectives and constraints:  

Max i( v ), v k,  i = 1, 2, …, r1, r1+1, …, r,                                                                                                   (22) 

Min i( v ), v k, i = 1, 2, …, r1, r1+1, …, r, 

Min i( v ), v k, i = 1, 2, …, r1, r1+1, …, r,                                                                                                                                                                                              

Subject to 

i( v ) + i( v ) + i( v )  3,  i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1], i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1], i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

v  0 . 

where i( v )  denotes the degree of membership of v to the i-th SVNS and i( v )  denotes the degree of 

rejection of functions v  from the i-th SVNS.  

Conjunction of SVNSs is defined by 

G C = { v , G( v ) C( v ),G( v ) C( v ), G( v ) C( v ) v k},                                             (23)    

Here G represents a neutrosophic objective function and C represents neutrosophic constraint. This conjunction 

operator can be easily generalized and applied to the neutrosophic optimization problem: 

D = { v , D( v )),D( v ) v k}, D( v ) =
r

1i 
 i( v ),D( v )=

r

1i 
 i( v ) ,  

D( v ) =
r

1i
 i( v )                                                                                                                                                  (24)         

where D represents a single valued neutrosophic set based representation of the decision. 



 
[Pramanik et al., 3(7): July, 2016]                                                                             ISSN 2349-4506 
  Impact Factor: 2.545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        ©Global Journal of Engineering Science and Research Management 

 [8] 

Min-operator is used for conjunction and max-operator for disjunction: 

D( v ) =
r

1i 
 i( v ), v k,   D( v ) =

r

1i 
 i( v ), v k, D( v ) = 

r

1i 
 i( v ), v k.                                           (25) 

Therefore, D( v ) i( v ),D( v ) i( v ), D( v ) i( v ),i = 1, 2, …, r1, r1+1, …, r.                                         (26)

  

where i( v )  denotes the degree of membership of v to the i-th SVNS, i( v ) denotes the degree of  

indeterminacy, and i( v )  denotes the degree of rejection of functions v  from the i-th SVNS.  

 

3.3.1 NLGP Model (I).          

Minimize              (27) 

Subject to   

i( v ) + 


i1 d - 

i1 d  =1, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + -

i2 d - 


i2 d  = 0, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + -

i3 d  - 

i3 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

 


i1 d , i = 1, 2, …, r1, r1+1, …, r, 

 


i2 d , i = 1, 2, …, r1, r1+1, …, r, 

 


i3 d , i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + i( v ) + i( v )  3,  i = 1, 2, …, r1, r1+1, …, r, 


i1 d  0, -

i2 d  0, -

i3 d  0, i = 1, 2, …, r1, r1+1, …, r, 



i1 d 


i1 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

-

i2 d 


i2 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

-

i3 d 


i3 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

v  0 . 

 

3.3.2 NLGP Model (IIa) 

Min η = 


r

1  i

-

i1

-

i1dw + 



r 

1  i
i2i2 dw + 




r

1  i
i3i3dw                                                                                                            (28) 

Subject to   

i( v ) + 


i1 d - 


i1 d  =1, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + 
-

i2 d - 


i2 d  = 0, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + 
-

i3 d  -


i3 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

i( v ) + i( v ) + i( v )  3,  i = 1, 2, …, r1, r1+1, …, r, 


i1 d 


i1 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

-

i2 d 


i2 d = 0, i = 1, 2, …, r1, r1+1, …, r, 

-

i3 d 


i3 d = 0, i = 1, 2, …, r1, r1+1, …, r, 



i1 d  0, 


i1 d  0,
-

i2 d  0,


i2 d  0, 
-

i3 d  0, 


i3 d  0, i = 1, 2, …, r1, r1+1, …, r, 

-

i1w  0, 

i2w  0, 

i3w  0, i = 1, 2, …, r1, r1+1, …, r, 
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i( v )[0, 1], i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

i( v )[0, 1],  i = 1, 2, …, r1, r1+1, …, r, 

v  0 . 

3.3.3 NLGP Model (IIb)                       (29) 

Min η = 


r

1  i

-

i1d + 



r 

1  i
i2d + 




r

1  i
i3d  

Subject to the same set of constraints of the NLGP Model (IIa). 

Here d


i1 , -

i2 d , -

i3 d , 

i1 d ,


i2 d , 

i3 d  are deviational variables. The numerical weights
-

i1w ,


i2w ,


i3w
 
associated with    



i1 d , 


i2 d , 

i3 d  represent the relative importance of achieving the aspired level of the respective neutrosophic 

goal subject to the given set of constraints. To assess the relative importance of the neutrosophic goals, the 

weighting scheme suggested by Pramanik and Roy [29] can be used to assign the values of 
-

i1w , 


i2w  ,


i3w . 

 

4. CONCLUSION 
This paper presents framework of neutrosophic linear goal programming problem. Three new intuitionistic 

fuzzy goal programming models have been presented. The proposed intuitionistic fuzzy goal programming 

models have been also extended to neutrosophic linear goal programming models. The essence of the proposed 

neutrosophic linear goal programming is that it is capable of dealing with indeterminacy and falsity 

simultaneously. Abdel-Baset et al. [51] presented goal programming models in 2016. However, in their study 

they maximize indeterminacy which is not realistic in decision making context. In this paper the definition of 

intersection of two single valued neutrosophic sets due to Salama and Alblowi [52] has been employed and 

direction of research in neutrosophic optimization problem has been proposed. The author hopes that the 

proposed framework of neutrosophic linear goal programming will open up new avenue of research in the field 

of optimization problems in neutrosophic environment. Many areas need to be explored and developed in 

neutrosophic linear goal programming especially priority structure of neutrosophic goals and priority based 

neutrosophic linear goal programming.   

 

REFERENCES 
1. Jones, D.F., and M. Tamiz. 2002. Goal programming in the period 1990-2000, in: M. Ehrgott and 

X.Gandibleux (eds.), Multiple Criteria Optimization: State of the art annotated bibliographic surveys, 

Kluwer 129-170. 

2. Simon, H.A. 1955. Models of man, Wiley, New York. 

3. Koopmans, T.C. 1951. Activity analysis of production and allocation. Cowels Commission Monograph 

13, New York. 

4. Charnes, A., W.W. Cooper, and R. Ferguson. 1955. Optimal Estimation of executive compensation by 

linear programming. Management Science 1, 138-151. 

5. Charnes, A., and W.W. Cooper. 1961. Management models and industrial applications of linear 

programming. Wiley, New Work. 

6. Ijiri, Y. 1965. Management goals and accounting for control, North–Holland, Amsterdam. 

7. Lee, S. M. 1972. Goal programming for decision analysis, Auerbach Publishers, Philadelphia. 

8. Ignizio, J.P. 1976. Goal Programming and Extensions, Lexington, Massachusetts, D. C. Health. 

9. Schniederjans, M. J. 1984. Linear goal programming. Potrocelli Books, New Jersey. 

10. Romero, C. 1991. Handbook of critical issues in goal programming, Pergamon Press, Oxford. 

11. Schniederjans, M. J. 1995. Goal programming: methodology and applications, Kluwer Academic 

Publishers, Boston. 

12. Narasimhan, R. 1980. Goal programming in a fuzzy environment. Decision Sciences 11, 325-336. 

13. Zadeh, L.A. 1965.  Fuzzy Sets. Information and control8, 338353.  

14. Hannan, E. L. 1981.  On fuzzy goal programming. Decision Science 12 (3), 522-531. 

15. Ignizio, J. P. 1982. On the (re) discovery of fuzzy goal programming. Decision Sciences13, 331336. 



 
[Pramanik et al., 3(7): July, 2016]                                                                             ISSN 2349-4506 
  Impact Factor: 2.545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        ©Global Journal of Engineering Science and Research Management 

 [10] 

16. Tiwari, R. N., S. Dharma and J. R. Rao. 1987. Fuzzy goal programming- an additive model. Fuzzy Sets 

and Systems24, 27 – 34.  

17.  Tiwari, R. N., S. Dharmar, and J. R. Rao. 1986. Priority structure in fuzzy goal programming. Fuzzy 

Sets and Systems 19, 251–259. 

18. Mohamed, R.H. 1997. The relationship between goal programming and fuzzy programming. Fuzzy Sets 

and Systems89, 215–222. 

19. Pramanik, S., and T.K. Roy. 2007. A fuzzy goal programming approach for multilevel programming 

problems. European Journal of Operational Research176 (2), 1151–1166. 

20. Pramanik, S., and T.K. Roy. 2008. Multiobjective transportation model based on priority based fuzzy 

goal programming. Journal of Transportation Systems Engineering and Information Technology 7(3), 

40-48. 

21. Pramanik, S., and P.P. Dey. 2011. Quadratic bi-level programming problem based on fuzzy goal 

programming approach. International Journal of Software Engineering & Applications 2(4), 41-59. 

22. Pramanik, S 2012. Bilevel programming problem with fuzzy parameter: a fuzzy goal programming 

approach. Journal of Applied Quantitative Methods. 7(1), 09-24. 

23. Atanassov, K. 1983. Intuitionistic fuzzy sets, in: Proceedings of theVII ITKR’s Session, Sofia (Deposed 

in Central Sci.-Techn. Library of Bulgaria Academy of Science), 1677-1684. 

24. Atanassov, K. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems20 (1), 87  96. 

25. Angelov, P. 1995. Intuitionistic fuzzy optimization. Notes on Intuitionistic Fuzzy Sets1(2), 123 129. 

26. Angelov, P. 1997. Optimization in an intuitionistic fuzzy environment. Fuzzy Sets and Systems86, 299 

306. 

27. Zimmermann, H. J. 1978. Fuzzy programming and linear programming with several objective 

functions. Fuzzy Sets and Systems 1, 4555. 

28. Angelov, P. 2001. Multi-objective optimization in air–conditioning systems: comfort/discomfort 

definition by IF sets. Notes on Intuitionistic Fuzzy Sets 7(1), 10-21. 

29. Pramanik, S., and T.K. Roy. 2005. An intuitionistic fuzzy goal programming approach to vector 

optimization problem. Notes on Intuitionistic Fuzzy Sets 11(5), 01–14. 

30. Pramanik, S., and T.K. Roy. 2007. An intuitionistic fuzzy goal programming approach for a quality 

control problem: a case study. Tamsui Oxford Journal of Management Sciences 23(3), 01–18.  

31. Pramanik, S., and T.K. Roy. 2007. Intuitionistic fuzzy goal programming and its application in solving 

multi-objective transportation problem. Tamsui Oxford Journal of Management Sciences 23(1), 01–16.  

32. S. Pramanik, P.P. Dey, T. K. Roy. (2011). Bilevel programming in an intuitionistic fuzzy environment. 

Journal of Technology 42, 103-114. 

33. Smarandache, F. (1998). A unifying field in logics: Neutrosophic logic, Neutrosophy, neutrosophic set, 

neutrosophic probability. American Research Press, Rehoboth. 

34. Smarandache, F. (2002). A unifying field in logics: neutrosophic logics. Multiple Valued Logic 8 (3) 

(2002), 385-438. 

35. Smarandache, F. (2005). Neutrosophic set. A generalization of intuitionistic fuzzy set. Internal Journal 

of Pure and Applied Mathematics 24, 287-297. 

36. Smarandache, F. (2010). Neutrosophic set – a generalization of intuitionistic fuzzy set. Journal of 

Defense Resources Management 1(1) (2010), 107-116. 

37. Georgiev, K. (2005). A simplification of the neutrosophic sets. Neutrosophic logic and intuitionistic 

fuzzy sets. Notes on Intuitionistic Fuzzy Sets 11(2), 28-31. 

38. Rivieccio, U. (2008). Neutrosophic logics: prospects and problems. Fuzzy Sets and Systems 159 (14), 

1860-1868. 

39. Wang, H., F. Smarandache, Y. Zhang, R. Sunderraman. (2010). Single valued neutrosophic sets. 

Multisspace and Multistructure 4 (2010), 410-413. 

40. Mohan, J., V. Krishnaveni, Y. Guo. (2013). MRI denoising using nonlocal neutrosophic set approach 

of Wiener filtering, Biomedical Signal Processing and Control 8(6), 779-791. 

41. Ye, J. (2015). Improved cosine similarity measures of simplified neutrosophic sets for medical 

diagnoses, Artificial Intelligence in Medicine 63, 171–179. 

42. Biswas, P., S. Pramanik, B.C. Giri (2015). TOPSIS method for multi-attribute group decision making 

under single-valued neutrosophic environment. Neural computing and Application, 2015. DOI: 

10.1007/s00521-015-1891-2. 

https://scholar.google.co.in/scholar?oi=bibs&cluster=1269945648171559727&btnI=1&hl=en
http://www.sciencedirect.com/science/article/pii/S1746809413001055
http://www.sciencedirect.com/science/article/pii/S1746809413001055


 
[Pramanik et al., 3(7): July, 2016]                                                                             ISSN 2349-4506 
  Impact Factor: 2.545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        ©Global Journal of Engineering Science and Research Management 

 [11] 

43. Biswas, P., S. Pramanik, B.C. Giri . (2016).Aggregation of triangular fuzzy neutrosophic  set 

information and its application to multi-attribute decision making. Neutrosophic Sets and Systems 12. 

In Press. 

44. Biswas, P., S. Pramanik, B.C. Giri(2016). Value and ambiguity index based ranking   method of single-

valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. 

Neutrosophic Sets and Systems 12. In Press. 

45. Pramanik, S., P. Biswas, B.C. Giri. (2015). Hybrid vector similarity measures and their applications to 

multi-attribute decision making under neutrosophic environment. Neural Computing and Applications, 

DOI 10.1007/s00521-015-2125-3. 

46. Peng, J.J, J.Q Wang, H.Y. Zhang, X.H. Chen.(2014). An outranking approach for multi-criteria 

decision-making problems with simplified neutrosophic sets. Applied  Soft Computing 25:336-346. 

47. Gal, I.A., L.Vlădăreanu, F. Smarandache, H. Yu, M. Deng. (2014). Neutrosophic logic approaches 

applied to” RABOT” real time control 1,55-60,EuropaNova, Bruxelles, 2014.  

48. Roy, R., P. Das. (2015). A multi-objective production planning roblem based on neutrosophic linear 

rogramming approach. Internal Journal of Fuzzy Mathematical Archive 8(2) 81-91. 

49. Das, P., T.K. Roy. (2015).Multi-objective non-linear programming problem based on neutrosophic 

optimization technique and its application in riser design problem. Neutrosophc Sets and Systems 9, 88-

95. 

50. Hezam, I.M., M. Abdel-Baset, F.Smarandache. (2015). Taylor series approximation to solve 

neutrosophicmultiobjective programming problem. Neutrosophic Sets and Systems 10, 39-45. 

51.  Abdel-Baset, M., I.M. Hezam, F. Smarandache. (2016) Neutrosophic goal programming, 

Neutrosophic Sets and Systems 11, 112-118. 

52. Salama, A.A., S.A. Alblowi. (2012).Neutrosophic set and neutrosophic topological spaces. IOSR 

Journal of Mathematics (IOSR-JM) 3(4), 31-35. 

53. Zimmermann, H.J. (1991):  Fuzzy Set Theory and its Application, Kluwer Academic Publishers, New 

Delhi.  

54. Bellman, R. F. and L. A. Zadeh. (1970). Decision-making in a fuzzy environment. Management 

Sciences17, 141164. 

55. Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several 

objective functions. Fuzzy Sets and Systems 1, 4555. 

 

 

 

 

 

 

 

 

http://fs.gallup.unm.edu/NSS/TaylorSeriesApproximation.pdf
http://fs.gallup.unm.edu/NSS/TaylorSeriesApproximation.pdf
http://fs.gallup.unm.edu/NSS/NeutrosophicGoalProgramming.pdf
http://fs.gallup.unm.edu/NSS/NeutrosophicGoalProgramming.pdf

